Improved Lower Bounds for Van Der Waerden Numbers

نویسندگان

چکیده

Recently, Ben Green proved that the two-color van der Waerden number ω(3, k) is bounded from below by $${k^{{b_0}\left( k \right)}}$$ where $${b_0}\left( \right) = {c_0}{\left( {{{\log \,k} \over {\log \log \,k}}} \right)^{1/3}}$$ . We prove a new lower bound of kb(k) with $$b\left( {{c\log \,k}}$$ This done modifying Green’s argument, replacing complicated result about random quadratic forms an elementary probabilistic result.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on some van der Waerden numbers

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this l...

متن کامل

Primitive Recursive Bounds for Van Der Waerden Numbers

Presented at a meeting of the British Mathematics Colloquium; received by the editors February 10,1988. 1980 Mathematics Subject Class~fication (1985 Revision). Primary 05A99; Secondary 15A03.

متن کامل

A lower bound for off-diagonal van der Waerden numbers

Article history: Received 3 November 2008 Accepted 2 January 2009 Available online 11 September 2009

متن کامل

Bounds on Van Der Waerden Numbers and Some Related Functions

For positive integers s and k1, k2, . . . , ks, let w(k1, k2, . . . , ks) be the minimum integer n such that any s-coloring {1, 2, . . . , n} → {1, 2, . . . , s} admits a ki-term arithmetic progression of color i for some i, 1 ≤ i ≤ s. In the case when k1 = k2 = · · · = ks = k we simply write w(k; s). That such a minimum integer exists follows from van der Waerden’s theorem on arithmetic progre...

متن کامل

Sane Bounds on Van der Waerden-Type Numbers

In Ramsey theory (a branch of combinatorics) one often proves that a function exists by giving enormous bounds on it. The function’s actual values may be much smaller; however, this is not known. In this paper we explore variants and special cases of these functions where we obtain much smaller bounds. The following is known: no matter how the lattice points of a coordinate plane are colored re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorica

سال: 2022

ISSN: ['0209-9683', '1439-6912']

DOI: https://doi.org/10.1007/s00493-022-4925-2